Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.

Identifieur interne : 000284 ( Main/Exploration ); précédent : 000283; suivant : 000285

Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.

Auteurs : Angela-Nadia Albetel [États-Unis] ; Caryn E. Outten [États-Unis]

Source :

RBID : pubmed:29746245

Descripteurs français

English descriptors

Abstract

Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions.

DOI: 10.1016/bs.mie.2017.11.003
PubMed: 29746245
PubMed Central: PMC6427907


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.</title>
<author>
<name sortKey="Albetel, Angela Nadia" sort="Albetel, Angela Nadia" uniqKey="Albetel A" first="Angela-Nadia" last="Albetel">Angela-Nadia Albetel</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of South Carolina, Columbia, SC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of South Carolina, Columbia, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of South Carolina, Columbia, SC, United States. Electronic address: outten@sc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of South Carolina, Columbia, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29746245</idno>
<idno type="pmid">29746245</idno>
<idno type="doi">10.1016/bs.mie.2017.11.003</idno>
<idno type="pmc">PMC6427907</idno>
<idno type="wicri:Area/Main/Corpus">000243</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000243</idno>
<idno type="wicri:Area/Main/Curation">000243</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000243</idno>
<idno type="wicri:Area/Main/Exploration">000243</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.</title>
<author>
<name sortKey="Albetel, Angela Nadia" sort="Albetel, Angela Nadia" uniqKey="Albetel A" first="Angela-Nadia" last="Albetel">Angela-Nadia Albetel</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of South Carolina, Columbia, SC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of South Carolina, Columbia, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
<affiliation wicri:level="4">
<nlm:affiliation>University of South Carolina, Columbia, SC, United States. Electronic address: outten@sc.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of South Carolina, Columbia, SC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Sud</region>
<settlement type="city">Columbia (Caroline du Sud)</settlement>
</placeName>
<orgName type="university">Université de Caroline du Sud</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Methods in enzymology</title>
<idno type="eISSN">1557-7988</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Circular Dichroism (methods)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Intracellular Signaling Peptides and Proteins (chemistry)</term>
<term>Intracellular Signaling Peptides and Proteins (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>Protein Interaction Maps (MeSH)</term>
<term>Saccharomyces cerevisiae (chemistry)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (chemistry)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Thermodynamics (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cartes d'interactions protéiques (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Dichroïsme circulaire (méthodes)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Liaison aux protéines (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (composition chimique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines et peptides de signalisation intracellulaire (composition chimique)</term>
<term>Protéines et peptides de signalisation intracellulaire (métabolisme)</term>
<term>Saccharomyces cerevisiae (composition chimique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Thermodynamique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Intracellular Signaling Peptides and Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxidoreductases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Circular Dichroism</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines et peptides de signalisation intracellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Dichroïsme circulaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Protein Binding</term>
<term>Protein Interaction Maps</term>
<term>Thermodynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartes d'interactions protéiques</term>
<term>Cinétique</term>
<term>Concentration en ions d'hydrogène</term>
<term>Liaison aux protéines</term>
<term>Thermodynamique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29746245</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1557-7988</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>599</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Methods in enzymology</Title>
<ISOAbbreviation>Methods Enzymol</ISOAbbreviation>
</Journal>
<ArticleTitle>Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.</ArticleTitle>
<Pagination>
<MedlinePgn>327-353</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0076-6879(17)30341-5</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/bs.mie.2017.11.003</ELocationID>
<Abstract>
<AbstractText>Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions.</AbstractText>
<CopyrightInformation>© 2018 Elsevier Inc. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Albetel</LastName>
<ForeName>Angela-Nadia</ForeName>
<Initials>AN</Initials>
<AffiliationInfo>
<Affiliation>University of South Carolina, Columbia, SC, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Outten</LastName>
<ForeName>Caryn E</ForeName>
<Initials>CE</Initials>
<AffiliationInfo>
<Affiliation>University of South Carolina, Columbia, SC, United States. Electronic address: outten@sc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM100069</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R35 GM118164</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Enzymol</MedlineTA>
<NlmUniqueID>0212271</NlmUniqueID>
<ISSNLinking>0076-6879</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C529266">FRA2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047908">Intracellular Signaling Peptides and Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="C545181">Grx3 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047908" MajorTopicYN="N">Intracellular Signaling Peptides and Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060066" MajorTopicYN="N">Protein Interaction Maps</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013816" MajorTopicYN="N">Thermodynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">BolA-like protein</Keyword>
<Keyword MajorTopicYN="Y">Circular dichroism</Keyword>
<Keyword MajorTopicYN="Y">Fe–S cluster transfer</Keyword>
<Keyword MajorTopicYN="Y">Iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">Monothiol glutaredoxin</Keyword>
<Keyword MajorTopicYN="Y">pH titration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29746245</ArticleId>
<ArticleId IdType="pii">S0076-6879(17)30341-5</ArticleId>
<ArticleId IdType="doi">10.1016/bs.mie.2017.11.003</ArticleId>
<ArticleId IdType="pmc">PMC6427907</ArticleId>
<ArticleId IdType="mid">NIHMS1005518</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Struct Biol. 2002 Mar;9(3):188-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1992 Dec 7;1140(2):175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1280165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2004 Aug 15;331(2):370-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15265744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Jan;169(1):107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 30;281(26):17661-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Aug 23;128(33):10672-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16910649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4554-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17074835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 18;283(16):10276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18281282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Apr 9;27(7):1122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18354500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jun 9;48(22):4747-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19388667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jul 7;48(26):6041-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 13;48(40):9569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19715344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Oct 20;48(41):9848-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19772300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Feb 12;392(3):467-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20085751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Sep 29;132(38):13120-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20812736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Oct 6;12(4):373-385</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20889129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jan 7;286(1):867-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20978135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jul 1;15(1):19-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21299470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2011 May 7;47(17):4989-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21437321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Oct 18;50(41):8957-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Feb 28;51(8):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22309771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Sep 19;134(37):15213-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22963613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dalton Trans. 2013 Mar 7;42(9):3107-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23292141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 May 17;288(20):14200-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23543739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Oct 9;135(40):15153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Mar 18;111(11):4043-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24591629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):6203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Aug 29;289(35):24588-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25012657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1853(6):1513-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Jan 14;137(1):390-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25478817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2015 Sep 25;465(3):620-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26296460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Oct;11(10):772-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26302480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2015 Dec 30;137(51):16133-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26613676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Mar;170(3):1284-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26672074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Oct;172(2):858-873</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27503603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Oct 21;291(43):22344-22356</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27519415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 Aug 17;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27532773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2016 Nov 18;11(11):3114-3121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27653419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Dec 7;8(12):1283-1293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27878189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2016 Dec 13;55(49):6869-6879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27951647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gen Subj. 2017 Aug;1861(8):2119-2131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1978 Oct 31;17(22):4770-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">728385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 Jan 18;33(2):403-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8286370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Nov 1;271(44):27659-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8910356</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Sud</li>
</region>
<settlement>
<li>Columbia (Caroline du Sud)</li>
</settlement>
<orgName>
<li>Université de Caroline du Sud</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Sud">
<name sortKey="Albetel, Angela Nadia" sort="Albetel, Angela Nadia" uniqKey="Albetel A" first="Angela-Nadia" last="Albetel">Angela-Nadia Albetel</name>
</region>
<name sortKey="Outten, Caryn E" sort="Outten, Caryn E" uniqKey="Outten C" first="Caryn E" last="Outten">Caryn E. Outten</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000284 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000284 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29746245
   |texte=   Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29746245" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020